
A nanocomposite to increase the shelf life of products

- Apple

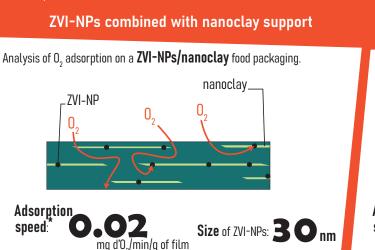
Packaging

and then dispersed within nanoclay in the whole packaging to limit 0, diffusion:

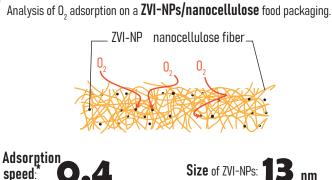
physically, nanoclays playing the role of obstacles on packaging,

chemically, ZVI-NPs are oxydized instead of food.

0, Can ZVI-NPs efficiently prevent the diffusion of O, through food packaging?


0,

OBJECTIVE


Investigating different nanocomposites based on ZVI-NPs to design new food packaging to increase the product's shelf life.

SOME RESULTS OF THE PROJECT

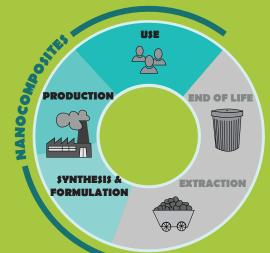
The presence of nanoclay in food packaging slows down the diffusion of O, towards food. In addition, the presence of ZVI-NPs allows O, adsorption to further increase product's shelf life.

ZVI-NPs combined with nanocellulose fibers

- * O, adsorption speed has been analysed for the first 30 min.

ZVI-NPs are efficient, they limit the amount of O2 diffusion within the packaging and the **0**, adsorption is stable over time.

d'O₂/min/g of film


 * O, adsorption speed has been analysed for the first 30 min.

ZVI-NPs are more accessible when dispersed in a thin self supported film of nanocellulose fibers. However, the $\mathbf{0}_2$ adsorption appears as less efficient over time.

To improve existing packaging, the addition of O, scavengers such as ZVI-NPs really decreases food oxydation:

ZVI-NPs + nanocellulose allow a faster adsorption of 0, but limited in time, usable for short term applications, ZVI-NPs + nanoclay provide a slow adsorption of 0, which lasts over time, usable for longer term applications.

LIFE CYCLE STAGES STUDIED

 \succ labex-serenade@osupytheas.fr

The LabEx (Laboratory of Excellence) Serenade is a research project funded by the Programme d'Investissements d'Avenir (PIA) 2012 within the framework of the Initiative of Excellence of the University of Aix-Marseille (AMIDEX).

