

Indium

in future

× High mechanical fragility

× Availability uncertain

Safe(r) silver nanowires

A BETTER ALTERNATIVE TO INDIUM?

Indium is being intensively used in touch screens but has serious disavantages. Thus, silver seems to be a promising alternative:

DAMAGED SCREENS

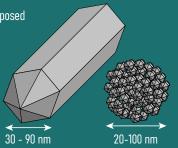
The use of silver nanowires in touch screens can be a good alternative to indium based materials.

But the impact of these nanowires has to be evaluated on our skin. Is silver released when touch screens are damaged?

SILVER NANOWIRES OR NANOPARTICLES?

Silver can be toxic. However, **silver nanowires** (NWs) are **less likely** than nanoparticles (NPs) **to release Ag***:

SULFIDATION TO PREVENT TOXICITY


 $2Ag^+ + S^{2-} \rightarrow Ag_2S$

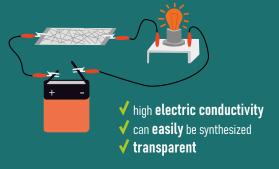
Sulfidation of silver nanowires drastically reduces the solubility of Ag. This process

Silver NWs are a **cristallized structure** as opposed to silver NPs with a more amorphous nature.

Silver NWs are the most stable.

occurs naturally:

Silver


availability

Lower cost and large

Fewer toxicity concerns

/S. / Flexible network

PROPERTIES OF SILVER NANOWIRES

OBJECTIVES

Developing a new strategy to manufacture safer silver nanowires:

□ Chemical protection against Ag⁺

Sulfidation appears to be a promising strategy but it must not alter **silver conductivity**.

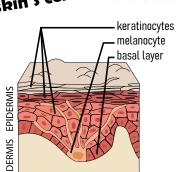
D Physical protection against Ag*

Developing silver nanowires and **test** their **toxicity** (linked to their diameter) on keratinocytes.

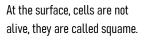
SOME RESULTS OF THE PROJECT

Silver nanowire toxicity on keratinocytes

Functionality after sulfidation


Ag

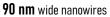
To check if sulfidation does not alter NWs conductivity, **chemical modeling** has been performed.


This prevents the release of Ag⁺ and limits the toxicity.

Information

Chemical modeling helps solving chemical issues. Computer programs use theoretical chemistry to predict the behaviour of substances. Thus, the structure and **the properties of molecules** can be calculated. Keratinocyte skin^žs cell

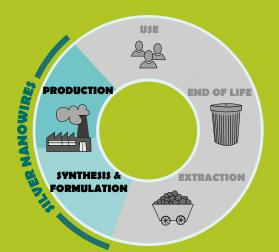
Keratinocytes are a **major component of skin epirdemis**, they multiply near the basal lamina, then differenciate and migrate to the surface.


Two types of silver nanowires (NWs) have been compared:

10010010101010100010100001010	00010101111101010010100101010000011110000
000111110001010001001111111000010010	
	3

Silver sulfidation leads to Ag_2S ionic conductivity, which may participate in **electrical conductivity**. This needs to be confirmed on an experimental basis.

30 nm wide nanowires


Whereas 30 nm wide NWs are crumpled within vesicules, 90 nm wide NWs keep their needle shape, **puncturing cells, they are thus, more toxic.**

It appears that the use of 30 nm NWs causes less concerns.

Moreover, it appears that thin NWs cause less damaged to the keratinocytes.

LIFE CYCLE STAGES STUDIED

🔀 labex-serenade@osupytheas.fr

The LabEx (Laboratory of Excellence) Serenade is a research project funded by the Programme d'Investissements d'Avenir (PIA) 2012 within the framework of the Initiative of Excellence of the University of Aix-Marseille (AMIDEX).

