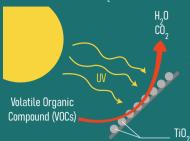


Safe(r) by design photocatalytic paint to reduce air pollutants

VOCs, AN INCREASING CONCERN

Volatile Organic Compounds (VOCs) are present in **indoor air** and come from different sources:



Some of them are, like formaldehyde, identified as **carcinogenic substances**.

A PROMISING INNOVATION

Remediation is possible thanks to a **photocatalytic process** using **titanium dioxide** (TiO,) nanoparticles (NPs):

Airborne pollutants such as VOCs can be **transformed into harmless compounds** (H₂O and CO₂).

FUNCTIONALITIES OF TIO, IN PAINTS

This is a **promising technology** to reduce in and outdoor **airborne pollutants**.

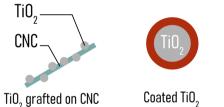
 Optimizing mechanical and rheological properties

 Enabling photocatalysis for indoor and outdoor air treatment

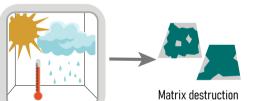
However the **risks** associated with exposure during the life cycle of paints are

OBJECTIVE

Developing, by a **safe(r) by design approach**, a **paint** containing **photocatalytic TiO**₂ **nanoparticles to clean ambient air**, taking into consideration safety aspects at every step of the life cycle.


SOME RESULTS OF THE PROJECT

In **preliminary formulations of the paint**, **TiO**₂ was so effective that in addition to transforming VOCs, it also **damages the organic paint matrix itself.** This degradation leads to the **release of potentially toxic TiO**₂ **NPs and other VOCs** in the environment.

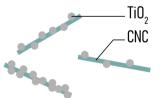

A TiO₂ paint on organic matrix

Therefore, two hypotheses were tested to avoid organic matrix degradation :

- **coating TiO**₂ to improve its dispersion in paint and limit matrix degradation - **grafting TiO**₂ on cellulose nanocristal (CNC) to limit its release and matrix degradation

Two paints have been developed with **coated or grafted TiO**₂. After putting them on a support, they were **aged in a climatic chamber** with controlled parameters (light, temperature, humidity) to mimic their fate in the environment.

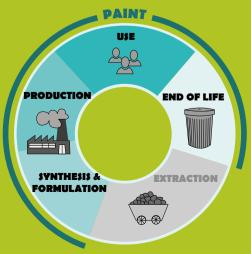
Whatever the technique, coated or grafted TiO_2 , the organic paint matrix is still damaged by TiO_2 . Thus potentially toxic particles may be released in the environment. Therefore, further experiments have been performed, **by substituting the organic matrix with mineral one**.


A TiO₂ paint on mineral matrix

The same $\mathrm{TiO}_{\mathrm{2}}$ incorporation strategies have been used with the mineral matrix:

Different coating
thicknesses have been tested.

Different quantities of
TiO₂ on CNC have been tested.


These techniques did not allow to develop a safe paint yet, paints do not remain stable after aging.

In each experiment these paints are **more stable** than those based on an organic matrix. **They can transform VOCs in harmless compounds** but their efficiency still **needs to be optimized**.

Paints with TiO_2 are **an attractive innovation** to clean ambient air, the above experiments show promising developments.

LIFE CYCLE STAGES STUDIED

➢ labex-serenade@osupytheas.fr

The LabEx (Laboratory of Excellence) Serenade is a research project funded by the Programme d'Investissements d'Avenir (PIA) 2012 within the framework of the Initiative of Excellence of the University of Aix-Marseille (AMIDEX).

